Charles Perrow



Download 35.07 Kb.
Date conversion03.07.2017
Size35.07 Kb.

ESD 83


Normal Accidents: Living with High-Risk Technologies1

Charles Perrow



It takes just the right combination of circumstances to produce a catastrophe, just as it takes the right combination of inevitable errors to produce an accident. Perrow
Introduction
The theme of this book is vividly articulated by a brief passage about a DC-10 crash. The author quotes from a National Transportation Safety Board (NTSB) report2:
The loss of control of the aircraft was caused by the combination of three events: the retraction of the left wing’s outboard leading edge slats; the loss of the slat disagreement warning system; and the loss of the stall warning system – all resulting from the separation of the engine pylon assembly. Each by itself would not have caused a qualified flight crew to lose control of the aircraft, but together during a critical portion of the flight, they created a situation, which afforded the flightcrew an inadequate opportunity to recognize and prevent the ensuing stall of the aircraft.

This paragraph and the apparently contradictory title of the book capture the core theme of Charles Perrow’s book. He argues that for complex systems, accidents are “normal events.” This school of thought is now known as Normal Accident Theory (NAT). Accidents in complex systems are presumed to be unavoidable because innocent and seemingly unrelated events accumulate and align to create major malfunctions that produce disastrous results. Perrow presents numerous and detailed examples: such as, Three Mile Island (TMI), aircraft crashes, marine accidents, dams, nuclear weapons, and DNA research. Through detailed reconstruction of events, he shows that the accidents are not only “unexpected, but are incomprehensible ...” to those responsible for the safe operation of those systems. “In part, this is because in these human-machine systems the interactions literally cannot be seen.”3 For these reasons, Perrow considers “normal accidents” and “system accidents” to be synonymous.

This is the second edition of the 1984 book. It was republished in 1999 and it has been updated with summaries of new research. Perrow identifies himself as “an organizational theorist.”4 He writes, “As an organizational sociologist, I was interested in the system characteristics of large accidents, but the discipline also made me aware of the organizational genesis of male-made disasters.”4 The vantage point, thesis and overall conclusions of this book reflect a strong sociological bent of the author. He began writing this book in 1979. The State University of New York and the National Science Foundation provided the initial funding. Subsequently, the Behavioral Sciences Center of Stanford University and the Office of Naval Research supported this work and the manuscript was finally completed at Yale. The book is well researched, tightly reasoned, and analytic to a surprising degree. Perrow defines all his terms, and frames his arguments in generally consistent conceptual structures from which he is able to derive insightful conclusions. He concludes, “… these failures are inevitable,” and takes up the challenge to propose a set of broad social policy alternatives to answer the question: with what risky systems can we live with? and why?
To answer these questions, Perrow frames Normal Accident Theory (NAT). We will now present a brief summary of the theory and will follow with a discussion its core concepts of this theory.

Normal Accident Theory

The “essence of the normal accident [is]: the interaction of multiple failures that are not in a direct operational sequence.” “Most normal accidents have a significant degree of incomprehensibility.”6 This criterion of incomprehensibility is important to the framework of normal accidents because to Perrow normal accidents are an inherent property of complex systems. This means that engineers, operations process designers, human factors and the like are completely helpless in preventing normal accidents. “Failures …can interact with other failures, and thus be a source of system accidents…”7

What are the causes of accidents? Perrow identifies two interacting variables that specify a space, which fully characterizes accidents. They are coupling and interactions. Interactions are the reciprocal actions among elements of the system. These interactions can be tightly coupled or loosely coupled. Tightly coupled interactions are those that do not tolerate delay. They have invariant sequences and negligible slack. Loosely coupled interactions have the opposite characteristics. The interactions are linear or complex. The term “linear” means simple. The opposite is “complex.” With these definitions, Perrow creates the following framework to classify systems.

interactions

complex




nuclear plant

tight

power


grids

nuclear


weapons

DNA

linear


dams


coupling


mining



assembly

line

R&D

firms



loose

cars


Using this taxonomy, Perrow then develops a set of policy recommendations, which are targeted at specific systems. The three policies are: abandon, restrict, tolerate and improve. The mapping of these policies is shown below.

catastrophic potential

high


low



nuclear

weapons

low

space



nuclear plants


Cost of alternatives



dams


DNA

high


mining

chemicals

The author stakes the validity of these policies on two arguments. One is his field research, which indicates that the systems in the “abandon” category are unacceptable to people. People “dread” those systems because they have no control over them, because they fear the potential accidents and the catastrophic human losses. Two, Perrow rejects the arguments that scientists or engineers are capable of designing accident-free systems or being able to control “abandon-type” tightly-coupled complex-systems. The infinitesimal probabilities of catastrophe are dismissed with “…like saying that in a war, only a small fraction of bullets kill anyone.”8 Likewise, in a set of corollary arguments he dismisses “bounded rationality” arguing that it makes people reason with limited information and thus they form uninformed opinions. Perrow claims that his model of social “dread” trumps bounded rationality and the “perfect rationality” of scientists and statisticians. This he calls “social rationality.”9

To seal his arguments and close logical escape-hatches, he identifies and justifies his dismissal of non-causes of accidents. He emphatically absolves “dumb operators,” which his research shows to be the most convenient and traditional scape-goats of system accidents, He dismisses the other usual suspects as well, technology, capitalism, and greed. Consistently and relentlessly, Perrow puts the causes of system accidents on the system itself. Accidents are embedded in the system. Accidents are an inherent property of complex and tightly coupled systems. Accidents are normal.

Discussion
It is our view that the author has an accurate view of what comprises a complex system. It is very consistent with our characterization of systems. A system has identifiable boundaries, it has a structure and purposeful behavior, and it is comprised of a large number of elements that interact with each other. Furthermore, Perrow elaborates on the nature of the interactions to develop a taxonomy of complex systems from which he derives a set of policies. Perrow identifies and frames the problem, and proposes solutions. As engineers, this is intellectually satisfying. The author’s system perspective is broad and comprehensive. For example, the system boundaries in his analysis of aircraft and airways extend to include the FAA, the NTSB, the aircraft, and the pilot. Likewise, the discussion of marine shipping accidents even includes poor weather conditions. The system boundaries of his discussion of the collapse of the Grand Teton dam are drawn such that the physical landscape and the incompetent organizations that contributed to its collapse are all included. By taking a broadly scoped system perspective, Perrow’s analyses give us a finely grained view of system accidents. The addenda to the 1984 edition, which includes a summary of recent research, are a welcome addition to the content of the book. The author appears at this time to feel much more confident about the sociological dimensions of Natural Accident Theory.

Perrow has brought a fresh and thorough study of system accidents. The social rationality approach to system accidents is innovative. It is also our belief that Perrow has framed the issues quite logically. And he has proposed a policy framework that is consistent with his mental model of the attitude of people and society to high-risk systems they dread, cannot control or understand. “We can’t even predict the behavior of totally man-made systems such as nuclear power plants, say, much less can we predict the behavior of very much more complicated systems such as e.coli, of which we only know about half the working parts.”10 However, there are some irritating inconsistencies that erode the forceful and convincing case he is making.

The author in several passionate passages absolves human error and “dumb operators” as key causes of system accidents. But then he presents nine typical behavior patterns in situations of system accidents. Yet fully six of the nine patterns are human errors.11 He also absolves capitalism and greed as causes of system accidents. However, in the discussion of the Bhopal disaster in India, he writes, “we might look at plain old free-market capitalism that allowed the Indian plant to be starved and run down…” 12 In addition, there is a discernable unevenness in the depth of research. This could be possibly due to not having access to documentation. For example, the information on the Apollo 13 system failures, Perrow relies largely on Tom Wolf’s “The Right Stuff.”
There are some assertions that are not fully developed or explained. Perrow claims “…elites – decide that certain technological possibilities are to be financed and put into place.”13 Elsewhere he concludes, “They are systems that elites have constructed, and thus can be changed or abandoned.”14 Unfortunately, he does not elaborate how he reached these conclusions.

The addenda for the 1999 edition of the book are in need of an experienced editor. The authors excitement of the review of recent research that confirm and validate his Natural Accident Theory suffers from a self-congratulatory tone. A more conservative and modest approach would have been more effective. Unfortunately this exuberance spills over into the final chapter of the book that deals with the Y2K problem. He describes the history and the potential problems quite accurately. He writes with a slight alarmist tone, which is somewhat jarring, especially because alarm is explicitly absent in the rest of the book. On Y2K, it almost appears that he is positioning himself for an “I told you so.”

We think that he is too pessimistic about the creative and innovative capabilities of people and organizations. We think that rather than “abandon,” it is preferable to adopt a policy of limited, over-managed, and closely monitored pilots to learn. Over time, people will learn the mysteries of complex systems in the same way that scientists can now model the interactions of leptons or social scientists like Cyert and March have modeled decisions in firms15. It is true that people have made a mess of things in the past; they have also shown themselves to be noble and principled. We have created immensely complex systems that are resilient, loosely coupled, and enormously beneficial to learning and commerce. The Internet is an example.
Fortunately, these shortcomings do not significantly affect the overall persuasiveness of the Natural Accident Theory. Although we think that Perrow errs by recommending an “abandon” policy. On balance, “Normal Accidents” is logically reasoned and it presents us with a useful framework to analyze and discuss difficult issues about complex systems. “Normal Accidents” should be required reading for anyone engaged in technology policy and system design.


1 1999, Princeton University Press. Princeton, New Jersey.

2 page 138.

3 page 9.

4 page 10.

4 page364.

6 page 23.

7 page 35

8 page 55


9 page 315.

10 page 303

11 page 277

12 page 360

13 page 339

14 page 352

15 Cyert, R.M. and J.G. March, 1992. A Behavioral Theory of the Firm. Blackwell Business, Oxford, UK.

page

7/3/17



The database is protected by copyright ©hestories.info 2016
send message

    Main page