Table of Contents 1 Mission Summary 8



Download 1.52 Mb.
Page1/47
Date conversion12.07.2018
Size1.52 Mb.
  1   2   3   4   5   6   7   8   9   ...   47

Mars Or Bust, LLC


Table of Contents

1 Mission Summary 8

1.1 Context of this design exercise 8

1.2 Summary of mission characteristics 8

1.3 Key Assumptions 9

1.4 Top Level Requirements 9

2 Systems Engineering and Integration 9

2.1 Overview 10

2.2 Key Assumptions 10

2.3 Design Philosophy 10

2.4 Foldouts 11

3 Mars Environment and In-Situ Resource Utilization 11

3.1 Mars Environment Overview 11

3.2 Mars Environment Parameters 11

3.3 Future Considerations 17


4 In-Situ Resource Utilization 17

4.1 Level 2 Requirements 17

4.2 Interface Design 19

4.3 Operations 21

4.4 Summary of ISPP Plant Designs and Processes 21

4.5 Benefits of ISRU for Future Missions 26

4.6 Additional Martian Resources – Water and Soil 26

4.7 Verification of Requirements 27

4.8 Future Considerations 28


5 Structures Subsystem 28

5.1 Overview 28

5.2 Level 2 Requirements 28

5.3 Input/Output Diagram 29

5.4 Design and Assumptions 29

5.5 Verification of Requirements 42



6 Electrical Power Distribution and Allocation Subsystem 45

6.1 Overview 45

6.2 Design and Assumptions 48

6.3 Verification of Requirements 52

6.4 Future Considerations: 54

7 Environmental Control and Life Support Subsystem 54

7.1 Overview 54

7.2 Requirements 56

7.3 Atmosphere Subsystem 57

7.4 Water Subsystem 65

7.5 Waste Subsystem 75

7.6 Food Subsystem 78

7.7 Integrated System 83

7.8 Conclusion 92

8 Thermal Control Subsystem 93

8.1 Requirements 93

8.2 Overview of Design Process 94

8.3 Thermal Subsystem Design 96

8.4 Verification of Requirements 101

8.5 Failure Modes Effects Analysis 103

8.6 Future Considerations 104

9 Crew Accommodations 105

9.1 Crew Accommodations Overview 105

9.2 Crew Accommodations Design and Assumptions 108

9.3 Crew Accommodations Verification of Requirements 117

9.4 Crew Accommodations Failure Modes and Effects Analysis 119

9.5 Crew Accommodations Conclusions 121


10 Command, Control, and Communication Subsystem 122

10.1 Overview 122

10.2 Design and Assumptions 123

10.3 Verification of Requirements 140



11 Robotics and Automation Systems and Interfaces 141

11.1 Overview 141

11.2 Design and Assumptions 143

11.3 Verification of Requirements 147



12 Extravehicular Activity Interfaces Subsystem 148

12.1 Overview 148

12.2 Design and Assumptions 154

12.3 Requirements Verification 165



13 Management Plan 168

13.1 Overview 168

13.2 Schedule 169

14 Conclusions 171

14.1 Design Summary 171

14.2 Key Design Drivers 172

14.3 Key Challenges 173


15 Appendix A: Review of Mars Exploration Past, Present, and Future 174

15.1 Mars 1960 A/B, USSR (Tim Lloyd) 174

15.2 Mars 1, USSR (Tim Lloyd) 174

15.3 Sputnik 24, USSR (Keagan Rowley) 174

15.4 Zond 2/3, USSR (Tim Lloyd) 175

15.5 Mars 1969 A/B, USSR (Jen Uchida) 175

15.6 Cosmos 419, USSR (Keagan Rowley) 176

15.7 Mars 2/3, USSR (Meridee Silbaugh) 176

15.8 Mars 4, 5, 6, 7, USSR (Meridee Silbaugh) 178

15.9 The Viking Project, USA (Heather Chluda) 179

15.10 Phobos 1/2, USSR (Tim Lloyd) 182

15.11 Mars Observer, USA (Eric Schleicher) 183

15.12 Mars 96, Russia (Keagan Rowley) 184

15.13 Mars Global Surveyor, USA (Eric Schleicher) 186

15.14 Mars Climate Orbiter, USA (Nancy Kungsakawin) 188

15.15 Mars Polar Lander, USA (Teresa Ellis) 189

15.16 2001 Mars Odyssey, USA (Nancy Kungsakawin) 190

15.17 Nozomi, Japan (Jen Uchida) 191

15.18 Mars Express, ESA (Teresa Ellis) 193

15.19 Mars Exploration Rovers, USA (Dax Matthews) 194

15.20 Mars Reconnaissance Orbiter, USA (Meridee Silbaugh) 196

15.21 Review of Mars Direct: A proposal by Robert Zubrin (Tyman Stephens) 197

15.22 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team (Keith Morris) 202

15.23 Mars Excursion Module, ESA Aurora Student Design Project (Juniper Jairala) 204

15.24 NASA AIM (Christie Sauers) 209

15.25 The Mars Society (Christie Sauers) 210


16 Appendix B: Acronyms 213

17 Appendix C: Mars Environment Information Sheet 213

17.1 Gravity 213

17.2 Orbital Characteristics 213

17.3 Atmosphere 214

17.4 Temperature 216

17.5 Solar Flux 218

17.6 Radiation 218

17.7 Wind 219

17.8 Soil Properties 219

17.9 Mars Fact Sheet 220



18 Appendix D: References 222

19 Appendix D: Acknowledgements 227


Table of Figures

Figure 3.1: Atmospheric Pressure at Surface of Mars 12

Figure 3.2: Atmospheric Pressure at the Surface of Mars, continued 13

Figure 3.3: Diurnal Temperature Variation 15

Figure 3.4: Diurnal Temperature Variation over Sol 06 15

Figure 4.5: Input / Output Diagram 19

Figure 4.6: ISRU Functional Subsystem Schematic 20

Figure 4.7: Zirconia Electrolysis 22

Figure 4.8: Sabatier Electrolysis 23

Figure 4.9: Reverse Water Gas Shift to produce Oxygen 24

Figure 4.10: Reverse Water-gas Shift and an Ethylene Reactor 25

Figure 5.11: Input/Output Diagram for Structures subsystem. 29

Figure 5.12: Upper floor plan. 30

Figure 5.13: Bottom floor plan. 31

Figure 5.14: Habitat view from the bottom showing the position of the leg supports. 36

Figure 5.15: Simple force diagram of the habitat. 36

Figure 6.16: Input/Output Diagram 48

Figure 6.17: General Functional Diagram 50

Figure 6.18: Life/Mission Critical 50

Figure 6.19: ECLSS 51

Figure 6.20: C3 51

Figure 6.21: Failure Tree 54

Figure 7.22: Subsystem Interactions 56

Figure 7.23: Baseline non-regenerable physical/chemical air ECLSS schematic 60

Figure 7.24: Physical/Chemical Air Life Support System Schematic – Option A 63

Figure 7.25: Physical/Chemical Air Life Support System Schematic – Option B 64

Figure 7.26: Closed Loop Water Management Flow Diagram 70

Figure 7.27: Electronic Nose Equipment 72

Figure 7.28: Ion Specific Electrode 72

Figure 7.29: Total Organic Carbon - Conductivity Diagram 72


Figure 7.30: Actual Total Organic Carbon Device 73

Figure 7.31: Sample of Conductivity Device 73

Figure 7.32: Sample Test Kits 73

Figure 7.33: Order of Monitoring Devices 74

Figure 7.34: Schematic of the Waste Management Subsystem 77

Figure 7.35: Food System Schematic 82

Figure 7.36: ECLSS Integrated Design 84

Figure 7.37: Interfaces between ECLSS and other subsystems 86

Figure 8.38: Input/Output Diagram 95

Figure 8.39: Thermal System Schematic 96

Figure 8.40: A radiator used aboard the ISS 100

Figure 8.41: FMEA Breakdown 104

Figure 9.42: Crew Accommodations Active Equipment Interfaces 115

Figure 10.43: C3 Subsystem Input Output Diagram 124

Figure 10.44: Command and Control Architecture 126

Figure 11.45: Input/output diagram for Robotics and Automation 143

Figure 11.46: Mars Exploration Rover 144

Figure 11.47: Conceptual Local Unpressurized Rover 145

Figure 11.48: Conceptual Mechanical Arm for the LPR 145

Figure 13.49: Mars or Bust Schedule 170


Figure 15.50: Mars 1969 A/B Orbital Details 176

Figure 15.51: Aerobraking Map of the Orbiter 188

Figure 15.52: Representative Art on Orbiter's Aerobraking Period 189

Figure 15.53: Nozomi Mission Sequence 192

Figure 15.54: Conceptual Drawing of an Operational Rover 195

Figure 15.55: Mars Direct Mission Schedule 198

Figure 15.56: The MTV, the Earth-Mars transit vehicle outlined by Mark Ford (1996); the MEM is on the far right. 205

Figure 15.57: Habitat presentation 208

Figure 15.58: Artists concept of the operational Advance Integration Matrix (AIM) facility at NASA, Johnson Space Center. 210

Figure 15.59:An aerial photo of the Mars Society Flashline Mars Arctic Research Station (FMARS), located in the Canadian Arctic on Devon Island. 211

Figure 15.60: The Mars Desert Research Station (MDRS) located in Hanksville, UT 212



Table of Tables

Table 3.1: Mars Environment Parameters 11

Table 3.2: Atmospheric Composition 13

Table 3.3: Landing sites of Viking 1 and 2 landers and Pathfinder landers 14

Table 3.4: Mars Environment Seasonal Parameters 16

Table 4.5: Level 2 Requirements 18

Table 4.6: Mass, Power, Volume Breakdown 20

Table 4.7: Properties and flow rates of consumables 21

Table 4.8: ISPP Trade Study 25

Table 4.9: Verification of Requirements 27

Table 5.10: Level 2 Requirements 28

Table 5.11: Volume allocation and designed volume of subsystems. 32

Table 5.12: Key physical properties of aluminum. 34

Table 5.13: Launch and landing load factors. 35

Table 5.14: Failure Mode Effects Analysis. 41

Table 5.15: Mass and Volume Estimates of Structures Components. 42

Table 5.16: Requirements Verification 42

Table 6.17: Level 2 Requirements 45

Table 6.18: Power Profile 45

Table 6.19:Electrical Cabling Mass and Thermal Breakdown 46

Table 6.20: Power System Masses and Volumes 47

Table 6.21: Mass/Volume Breakdown 47

Table 6.22: Requirements Verification 53

Table 7.23: Baseline Non-regenerable Physical/Chemical Air Life Support System 59


Table 7.24: Air Management Life Support Technology Rankings 61

Table 7.25: Physical/Chemical Air Life Support System for Mars Mission–Option A 62

Table 7.26: Physical/Chemical Air Life Support System for Mars Mission–Option B 62

Table 7.27: Heat, Power, and Volume for ECLSS atmosphere technologies 65

Table 7.28: Water Quality Requirement: Maximum Contaminant Levels 65

Table 7.29: Water Management Parameters 67

Table 7.30: Hygiene & Potable Water Treatment Candidate Technologies 67

Table 7.31: Urine Treatment Candidate Technologies 69

Table 7.32: List of Technologies & Associated TRLs 71

Table 7.33: Water Sample Requirement for Off-Line Monitoring (Initial On-Orbit Operations) 73

Table 7.34: Water Sample Requirement for Off-Line Monitoring (Mature Operations) 73

Table 7.35: Heat, Power, and Volume for ECLSS Water Technologies 75

Table 7.36: Waste Product Breakdown for a 6-Person Crew 75

Table 7.37: Heat, Power, and Volume for ECLSS Waste Technologies 78

Table 7.38: Food Technology Specifications 81

Table 7.39: Heat, Power, and Volume for ECLSS Food Technologies 82

Table 7.40: ECLSS Total Mass, Power, and Volume Estimates 87


Table 7.41: Total Mass and Volume Values for Consumables 89

Table 7.42: Water Requirements 89

Table 7.43: Verification of Requirements 90

Table 8.44: Level 2 Requirements 94

Table 8.45: Heat Loads from Subsystems 97

Table 8.46: Thermal System Mass, Power, and Volume 99

Table 8.47: Requirement Verification Summary 101

Table 9.48: Crew Accommodations Top Level Requirements 106

Table 9.49: Crew Accommodations Level 2 Requirements 107

Table 9.50: Crew Accommodations Subsystem Equipment List 109

Table 9.51: Non-Active Crew Accommodations Equipment 113

Table 9.52: Clothing Trade Study 116

Table 9.53: Crew Accommodations Requirements Verification 118

Table 10.54: C3 Level 2 Requirements 123

Table 10.55: Command and Control Power 132

Table 10.56: Command and Control Mass and Volume 132

Table 10.57: Command and Control Failure Modes Effects Analysis 134

Table 10.58: ECLSS and Power Data for Transmission to Earth 136

Table 10.59: Thermal, Structures, ISRU and Mission Ops Data for Transmission to Earth 137


Table 10.60: Earth-Mars Link Budget 138

Table 10.61: Mars Habitat Link Summary 138

Table 10.62: C3 Requirements Verification 140

Table 11.63: Automation & Robotics Level 2 Requirements 141

Table 13.64: MOB Organizational Chart 169

Table 14.65: Mass Breakdown 171

Table 14.66: Aurora Mass Breakdown 172

Table 15.67: Consumable Requirements for Mars Direct Mission with Crew of Four 199

Table 15.68: Mass Allocations for Mars Direct Mission Plan 201

Table 15.69: Internal heat sources 207

Table 15.70:Summary of power demands 207

Table 15.71:Summary of final HAB mass budget 208




  1   2   3   4   5   6   7   8   9   ...   47


The database is protected by copyright ©hestories.info 2017
send message

    Main page